Abstract

Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.