Abstract

Microplastic particles (MP) are efficiently retained in wastewater treatment plants and enriched in sewage sludge. For monitoring MP contents in wastewater systems, sewage sludge is thus well suited, but also requires an isolation of MP from the sludge matrix, as other sewage sludge components may interfere with the MP identification and quantification. Although organic matter in sludge samples can be removed through acid and enzymatic digestion procedures, cellulose - mainly from toilet paper - remains in the digests, due to its high chemical resistivity and similar density to MP. We apply the separation concept of magnetic seeded filtration to isolate MP through selective hetero-agglomeration with magnetic seed particles. MP and cellulose differ in their hydrophobic properties and we investigate to what extent these differences can be exploited to selectively form MP-magnetite hetero-agglomerates in the presence of cellulose. These hetero-agglomerates are subsequently separated using a magnet. Five MP types (Polyethylene terephthalate (PET), polypropylene (PP), low density polyethylene (LDPE), polyvinyl chloride (PVC) and polystyrene (PS)) and cellulose particles were mixed in different combinations with both hydrophilic and hydrophobic (silanized) magnetite particles. PET, PP, LDPE and PS only poorly agglomerated with pristine (hydrophilic) magnetite, but efficiently formed hetero-agglomerates with hydrophobic magnetite and were successfully removed from suspensions (80−100%). PVC agglomerated more efficiently with pristine than with hydrophobic magnetite and cellulose only agglomerated to a limited extent with either hydrophilic or hydrophobic magnetite, resulting in a high process selectivity. Results from experiments conducted at different ionic strengths and with hydrophilic and hydrophobic magnetite suggests that the agglomeration process was dominated by hydrophobic interactions. Enzymatic and oxidative treatment of the MP only marginally affected the separation efficiencies and (treated) MP spiked to sewage sludge extracts were successfully recovered using magnetic seeded filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.