Abstract
The solvent extraction separation of lithium isotopes has become of growing interest due to the need for 6Li and 7Li isotopes in the nuclear industry. A one-step synthesis of room temperature ionic liquid with low viscosity 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]) (with reaction yields of 87.47%) was used by the ultrasonic method. The addition of ionic liquid [EMIm][NTf2] in the system significantly improved the extraction efficiency and separation factor compared to the traditional organic solvent anisole for extraction separation of lithium isotopes. The distribution ratio increased from 0.00145 (with the single stage separation factor of 1.024 ± 0.001) to 0.134 (with the single stage separation factor of 1.034 ± 0.001). Furthermore, a multi-stage extraction process was intended to enhance lithium isotope separation performance. Each stage of stripping can be considered as an extraction separation equilibrium process, in which the strip liquor from the load organic phase is used for separation in the next stage as the “original aqueous solution”. The abundance of 6Li+ gradually improved with an increase in the extraction stages. The relative abundance of 6Li+ increased by 1.492% at the 20-stage extraction separation (from 7.53% to 9.022%). This new and simple approach (stripping cross-flow multistage method (SCFM)) was to achieve large enrichment of lighter isotopes of lithium (6Li+) by combined extraction and stripping process. In summary, the present study offers the possibility for the enrichment of 6Li+ during lithium isotope extraction separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.