Abstract

For the first time polyolefins are separated according to tacticity by liquid chromatography. High-temperature gradient HPLC is shown to be suitable for the separation of polyethylene and polypropylene. As the stationary phase a porous carbon-based material is used; the mobile phase is composed of 1-decanol and 1,2,4-trichlorobenzene. It is shown that at an operating temperature of 160 °C linear polyethylene as well as syndiotactic and atactic polypropylenes are fully adsorbed on the stationary phase from 1-decanol. In contrast, isotactic polypropylene is fully eluted. This behavior provides a novel way for liquid chromatographic separation of polyolefins. After the isocratic elution of isotactic polypropylene with 1-decanol, all retained components are desorbed from the column packing in a gradient of 1-decanol/1,2,4-trichlorobenzene. Nearly baseline-separated peaks are obtained for all components even in the case where the components do not differ in their molar masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call