Abstract

AbstractA crystallization‐based process that separates pure fullerenes C60 and C70 from their mixture using o‐xylene as the solvent has been developed. Isothermal solid–liquid equilibrium phase diagrams of the C60‐C70‐o‐xylene ternary system for a number of temperatures were first determined at 1 atm. Taking advantage of the shift in solvent‐free composition of the C60‐C70 double saturation point with temperature and based on the solid solution‐forming phase behavior between C60 and C70, the flowsheet of a general crystallization process was then synthesized. It involved the fractionation of a C60‐C70 fullerene mixture into C60‐rich and C70‐rich solid solutions using temperature‐swing crystallization, followed by purification of the solid solutions with multistage crystallization into pure C60 and C70 solids. To demonstrate process feasibility, bench‐scale batch experiments were performed using a commercially available fullerene mixture that was pretreated by adsorption to remove higher fullerenes. C60 and C70 solids of purity higher than 99 wt % were obtained. © 2009 American Institute of Chemical Engineers AIChE J, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call