Abstract

Entrained air in oil can cause malfunctions and damages within hydraulic systems. In this paper, we extend existing approaches to reduce the amount of entrained air by separating air bubbles from oil using filter elements. The aim of this study was to investigate the ability of different untreated and surface modified woven and nonwoven fabrics (NWF) to separate air bubbles from oil when directly integrated into an intake socket of an oil pump. An experimental setup was constructed to generate entrained air in oil and to characterize changes in oil aeration and pressure drop induced by the filters. Measurements were conducted at volume flow rates of 2.2 and 5.4 l/min with an inflow angle normal to the filter elements. The developed setup and aeration measurement method proved to be suitable to generate entrained air in oil in a reproducible manner and to accurately characterize aerated oil up to air contents of about 5%. Significant influences on the aeration characteristics were found only for the NWF. Whereas the number of air bubbles decreased by up to 33% relative to the values in the oil reservoir for a flow rate of 2.2 l/min, a significant reduction of the volumetric air ratio could not be achieved as resulting bubble distributions comprised a higher number of large bubbles. We suggest that the lack of effective bubble separation was a result of the flow-induced pressure drop by the filters, which increased with the flow rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call