Abstract

A mathematical model describing the separation of enantiomers by simultaneous preferential crystallization in a coupled crystallizer configuration is developed. The model was validated against experimental data for a chemical model compound, the conglomerate forming system of asparagine monohydrate in water. The kinetic parameters required were taken from available literature sources and simulations compared to experimental data. Simulations were found to be in good agreement with experimental data. Additional model simulations suggest that the separation process can be improved by increasing the mean residence time of the liquid phase in the crystallizers, and the mass of seeds supplied. Reducing the size of seed crystals will also lead to an improved separation. The model can also be used to simulate the performance of the crystallization process for a racemic compound forming system. The racemic compound and the pure enantiomer can be separated simultaneously in each crystallizer, having sufficient enr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.