Abstract

The separation of empty and water-filled laser ablation and electric arc synthesized nanotubes is reported. Centrifugation of these large-diameter nanotubes dispersed with sodium deoxycholate using specific conditions produces isolated bands of empty and water-filled nanotubes without significant diameter selection. This separation is shown to be consistent across multiple nanotube populations dispersed from different source soots. Detailed spectroscopic characterization of the resulting empty and filled fractions reveals that water filling leads to systematic changes to the optical and vibrational properties. Furthermore, sequential separation of the resolved fractions using cosurfactants and density gradient ultracentrifugation reveals that water filling strongly influences the optimal conditions for metallic and semiconducting separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.