Abstract

We use a lattice-Boltzmann based Brownian dynamics simulation to investigate the separation of different lengths of DNA through the combination of a trapping force and the microflow created by counter-rotating vortices. We can separate most long DNA molecules from shorter chains that have lengths differing by as little as 30%. The sensitivity of this technique is determined by the flow rate, size of the trapping region, and the trapping strength. We expect that this technique can be used in microfluidic devices to separate long DNA fragments that result from techniques such as restriction enzyme digests of genomic DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call