Abstract
The image of an opaque object is created by observing the reflection of the light incident on its surface. The dichromatic reflection model describes the surface reflection as the sum of two components, diffuse and specular terms. The specular reflection component is usually strong in its intensity and polarized significantly compared to the diffuse components. On the other hand, the intensity of the diffuse component is weak and it tends to be unpolarized except near occluding contours. Thus, the observation of an object through a rotating polarizer approximately yields images containing constant diffuse component and specular component of different intensity. In this paper, we show that diffuse and specular components of surface reflection can be separated as two independent components when we apply Independent Component Analysis to the images observed through a polarizer of different orientations. We give a separation simulation of artificial data and also give some separation results of real scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.