Abstract

Diarylethene-based photoswitches have become very popular over the last few decades for potential applications in chemistry, materials science, and biotechnology due to their unique physical and chemical properties. We report the isomeric separation of a diarylethene-based photoswitchable compound using high-performance liquid chromatography. The separated isomers were characterized by ultraviolet-visible spectroscopy and mass spectrometry confirmed the isomeric nature of the compounds. The isomers were purified by preparative high-performance liquid chromatography, providing fractionated samples to study the isomers individually. A total amount of 13mg of an isomer of interest was fractionated from a solution of 0.4mg/ml of the isomeric mixture. Because the preparative high-performance liquid chromatographic method required large quantities of solvent, we explored the use of supercritical fluid chromatography as an alternative separation mode which, to the best of our knowledge, is the first time this technique is used to separate diarylethene-based photoswitchable compounds. Supercritical fluid chromatography provided faster analysis times while maintaining sufficient baseline resolution for the separated compounds and consuming less organic solvent in the mobile phase compared to high-performance liquid chromatography. It is proposed that the supercritical fluid chromatographic method be upscaled and used in future fractionation of the diarylethene isomeric compounds, becoming a more environmentally benign approach for compound purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.