Abstract

Separation of heavy metals to obtain potable water for domestic and agricultural applications is important considering health effects, bioaccumulation properties and applicability. The separation of Cr and Mn salts by Donnan exclusion are investigated using polysulfone (PSF) based membranes modified by anchoring ZnO nanoparticles. Use of Acid-treated ZnO nanoparticle enhnanced rejection properties for Cr and Mn (97.12 and 98.37%, respectively) for membranes based on 40% PSF, 8% PEG -400 and 0.8% ZnO. The use of polyethylene glycol (PEG)with molecular weight of 200 Da enhanced rejection properties to ~ 99%. This would provide excellent pathway for PSF membrane modification without affecting stability.Separation was dependent uponconcentrations of PSF, PEG, ZnO nanoparticles in dope solution, and bubble point pressure, pore size, number of pores, etc. Analysis of these properties and effect would provide pathway for design of membranes for heavy metal removal and process applications. Hence, they were analyzed using R studio multi-attribute linear regression model. Membrane performance regression analysis provided correlation with 95% fitting accuracy with 0.98 coefficient of regression, suggesting good relationship between predicted and observed data. This shows the applicability of model to save time and cost involved in designing membrane formation parameters and properties with optimized applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call