Abstract
Separation of chalcopyrite from molybdenite is currently mainly carried out by flotation, but this process is costly because of the extensive use of inhibitors. This study briefly describes a 7.0T/100CGC low-temperature superconducting magnetic separator and discusses its separation principle as well as the effect of magnetic induction on chalcopyrite separation from molybdenite. A molybdenum (Mo) concentrate assaying 6.00% copper (Cu) and 19.01% Mo was magnetically sorted using a diamond-shaped steel rod medium mesh at a feed concentration of 20% and a pulp flow rate of 5 L/min from a Cu-Mo flotation concentrate with 88% of particles smaller than 23 μm using the separator. A Mo concentrate assaying 0.46% Cu and 16.28% Mo was finally obtained with a roughing (1.3 T)-cleaning (5 T) superconducting magnetic separation process. Similarly, the superconducting magnetic separator was performed to separate a Cu-Mo bulk flotation concentrate, and produced Cu concentrate assaying 19.64% Cu and 0.03% Mo from the bulk concentrate assaying 18.52% Cu and 0.39% Mo with a particle size of less than 0.074 mm. At a magnetic induction of 7 T, a pulp concentration of 20% and a feed velocity of 5 L/min, the grade and recovery of Cu in the magnetic product were 19.64% and 81.59%, respectively, whereas the grade and recovery of Mo in the non-magnetic product were 1.52% and 90.07%, respectively. Superconducting magnetic separation has potential applications for removing Cu from Mo concentrates, and separating Cu and Mo from Cu-Mo bulk flotation concentrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.