Abstract

The main purpose of this study is to characterize and separate antimony from a stibnite concentrate through a low-temperature sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as flux and zinc oxide weight percentage, in charging, smelting temperature, smelting duration on the antimony yield, resultant crude antimony grade, and sulfur-fixing rate. A maximum antimony recovery of 97.07 pct, crude antimony grade of 96.45 pct, and 98.61 pct sulfur-fixing rate are obtained when a charge (containing 63.20 wt pct of flux and 21.30 wt pct of stibnite, a flux composition of \( W_{\text{NaOH}} /W_{{{\text{Na}}_{ 2} {\text{CO}}_{3} }} \) = 10/147, where W represents weight, and more than 10 pct of the stoichiometric requirement of zinc oxide dosage) is smelted at 1153 K (880 °C) for 120 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent. The solid residue is subjected to mineral dressing operation to obtain suspension, which is filtered ultimately to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of as-resultant zinc sulfide, more than 90 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 66.70 pct. This material can be sold as zinc sulfide concentrate or roasted to regenerate into zinc oxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.