Abstract

It can be stated that in the fine chemical industries, especially in the pharmaceutical industry, large amounts of liquid waste and industrial waste solvents are generated during the production technology. Addressing these is a key issue because their disposal often accounts for the largest proportion of the cost of the entire technology. There is need to develop regeneration processes that are financially beneficial to the plant and, if possible, reuse the liquid waste in the spirit of a circular economy, in a particular technology, or possibly elsewhere. The distillation technique proves to be a good solution in many cases, but in the case of mixtures with high water content and few volatile components, this process is often not cost-effective due to its high steam consumption, and in the case of azeotropic mixtures there are separation constraints. In the present work, the membrane process considered as an alternative; pervaporation is demonstrated through the treatment of low alcohol (methanol and ethanol) aqueous mixtures. Alcohol-containing process wastewaters were investigated in professional process simulator environment with user-added pervaporation modules. Eight different methods were built up in ChemCAD flowsheet simulator: organophilic pervaporation (OPV), hydrophilic pervaporation (HPV), hydrophilic pervaporation with recirculation (R-HPV), dynamic organophilic pervaporation (Dyn-OPV), dynamic hydronophilic pervaporation (Dyn-HPV), hybrid distillation-organophilic pervaporation (D + OPV), hybrid distillation-hydrophilic pervaporation (D + HPV), and finally hybrid distillation-hydrophilic pervaporation with recirculation (R-D + HPV). It can be stated the last solution in line was the most suitable in the terms of composition, however distillation of mixture with high water content has significant heat consumption. Furthermore, the pervaporation supplemented with dynamic tanks is not favourable due to the high recirculation rate in the case of tested mixtures and compositions.

Highlights

  • Nowadays, one of the most important problems is the protection of the quality and quantity of our water resources

  • Hydrophilic pervaporation membranes are much better suited for the separation of methanol-water and ethanol-water than organophilic pervaporation membranes

  • In the case of the hydrophilic membranes, the hybrid distillation-hydrophilic pervaporation system is the best solution for separating ethanol, methanol, and water, followed by a pervaporation process and a dynamic pervaporation process, respectively

Read more

Summary

Introduction

One of the most important problems is the protection of the quality and quantity of our water resources. Unlimited amounts of water have been available since man’s appearance. Water demand is increasing day by day, as the population, cultural and social needs are increasing, as well as the rapid industrial development that is taking place. Pollution of natural waters is mainly caused by industrial plants and agricultural activities. Industrial wastewater is causing increasing difficulties, which is why regulations for wastewater treatment are becoming. Membranes 2020, 10, 345 more stringent to protect the environment. These rules force emitters to reduce emissions of various industrial pollutants, to recycle, and use valuable by-products and waste using new technology

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.