Abstract

The short-range stiffness of smoothly but submaximally contracting isometric soleus muscles of anesthetised cats was measured by applying small fast stretches. The ratio of isometric tension to stiffness was plotted against tension over a wide range of muscle lengths and stimulus rates. The results fitted a straight line well, as predicted from crossbridge theory, showing the stiffness to be a function of tension only, independent of the combination of length and stimulus rate used to generate the tension. The major deviation from this line was attributed to incomplete fusion at low frequencies of stimulation. Values believed to be tendon compliance and crossbridge tension per unit of stiffness were found from the graph, and the tendon compliance correlated with the maximum muscle tension. Shortening the tendon by attaching nearer to the muscle changed the results in a manner consistent with the theory, provided that appropriate precautions were taken against slippage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call