Abstract
Electrorefining in the molten LiCl–KCl eutectic salt containing actinide (An) and rare-earth (RE) elements was conducted to recover An elements up to 10 wt% into liquid cadmium (Cd) cathode, which is much higher than the solubility of the An elements in liquid Cd at the experimental temperature of 773 K. In the saturated Cd cathode, the An and RE elements were recovered forming a PuCd 11 type compound, MCd 11 (M = An and RE elements). The separation factors of element M against Pu defined as [M/Pu in Cd alloy (cathode)]/[M/Pu in molten salt] were calculated for the saturated Cd cathode including MCd 11. The separation factors were 0.011, 0.044, 0.064, and 0.064 for La, Ce, Pr, and Nd, respectively. These values were a little differed from 0.014, 0.038, 0.044, and 0.043 for the equilibrium unsaturated liquid Cd, respectively. The above slight differences were considered to be caused by the solid phase formation in the saturated Cd cathode and the electrochemical transfer of the An and RE elements in the molten salt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.