Abstract

This paper aims at showing that the class of augmented Lagrangian functions, introduced by Rockafellar and Wets, can be derived, as a particular case, from a nonlinear separation scheme in the image space associated with the given problem; hence, it is part of a more general theory. By means of the image space analysis, local and global saddle-point conditions for the augmented Lagrangian function are investigated. It is shown that the existence of a saddle point is equivalent to a nonlinear separation of two suitable subsets of the image space. Under second-order sufficiency conditions in the image space, it is proved that the augmented Lagrangian admits a local saddle point. The existence of a global saddle point is then obtained under additional assumptions that do not require the compactness of the feasible set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.