Abstract

AbstractThis paper presents an approach to the problem of separation and sliding between soil and structure in the finite element analysis of dynamic soil‐structure interaction problems. Joint elements are arranged along the contact surface between soil and structure and they have a property such that tensile forces are not transmitted between the planes representing structure and soil in the finite element analysis. The dynamic properties governing the sliding are determined by the Mohr‐Coulomb failure law determined from the cohesion and the friction angle between soil and structure.The proposed method is applied to (i) a model of a reactor building resting on the free surface of layered ground and (ii) a buried foundation structure. The numerical computations reveal the following results: that the translation is dominant in the motion of the structure when sliding is taking place between soil and structure, and that the rocking is dominant in the rest of the response. The amplitude of the response during sliding is increased on any one point of the structure and decreased on any one point of the ground compared with that of the fixed condition at the interface. In the case of the buried structure, it is observed in the computed results that the structure and soil move in the opposite direction along the vertical contact surface and are separated from each other in the near surface region during the strong phase of the excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.