Abstract

Bowditch characterized relative hyperbolicity in terms of group actions on fine hyperbolic graphs with finitely many edge orbits and finite edge stabilizers. In this paper, we define generalized fine actions on hyperbolic graphs, in which the peripheral subgroups are allowed to stabilize finite subgraphs rather than stabilizing a point. Generalized fine actions are useful for studying groups that act relatively geometrically on a CAT(0) cube complex, which were recently defined by the first two authors. Specifically, we show that any group acting relatively geometrically on a CAT(0) cube complex admits a generalized fine action on the one-skeleton of the cube complex. For generalized fine actions, we prove a criterion for relative quasiconvexity of subgroups that cocompactly stabilize quasiconvex subgraphs, generalizing a result of Martínez-Pedroza and Wise in the setting of fine hyperbolic graphs. As an application, we obtain a characterization of boundary separation in generalized fine graphs and use it to prove that Bowditch boundary points in relatively geometric actions are always separated by a hyperplane stabilizer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.