Abstract

The contact process preferably used vanadium pentaoxide as catalyst to increase the rate of reaction of producing sulphuric acid. Sulfuric acid plants regularly require catalyst replacement in order to cope with process improvements. The spent catalyst is considered as hazardous solid waste and cannot be discarded untreated owing to presence of high amount of vanadium and other associated metals. Because of significant environment implications of spent catalyst wastes, it is imperative to recover valuable metals present in them. The recovery of precious materials or metals from waste will not only help in mitigating environment problem due to metal pollution but also help improve the economy of the country. The purpose of this research work is to develop method to recover vanadium from spent V2O5 catalyst. The detailed study of extraction, separation and recovery of vanadium from leached spent catalyst solution of composition; V, 3.6% ; Al, 2.1%; Fe, 1.3%; Ti, 0.8% and less than 1 % of Cr and Pb is reported in this paper. Cyanex 272 (bis (2, 4, 4-trimethylpentyl) phosphinic acid) has been explored for the recovery of vanadium from spent V2O5 catalyst. The effects of different parameters like, pH, solvent concentration, organic to aqueous ratio etc. were optimised for the complete extraction and recovery of vanadium. The proposed procedure gives high purity vanadium with almost a quantitative yield (~99%) and of course free from closely associated metals. The extractants could be reused up to ten cycles with no significant change in the extraction capability.

Highlights

  • The contact process preferably used vanadium pentaoxide as catalyst to increase the rate of reaction of producing sulphuric acid

  • The above investigations project the potential of Cyanex 272 for the recovery of vanadium from spent V2O5 catalyst of composition V- 366 mg/L, Al-215 mg/L, Fe-129 mg/L and Ti-75 mg/L

  • In the proposed extraction process vanadium remains in aqueous phase which has two major advantages

Read more

Summary

Introduction

The contact process preferably used vanadium pentaoxide as catalyst to increase the rate of reaction of producing sulphuric acid. The increased demand of vanadium by the industry has put extra pressure for the production of metal which has caused gradual depletion of natural resources containing V. This has encouraged researchers to look for alternative or secondary sources such as industrial or electronic wastes, spent catalysts and other by products. The metal recovery from spent catalyst is gaining interest due to both, its hazardous nature and stringent regulations associated with disposal methods (Furimsky 1996; Srichandan et al 2013). After a number of deactivation–activation cycles, the catalyst is discarded as waste (Furimsky 1996)

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.