Abstract

With the increased requests for more sustainable extraction processes feedstocks with low metal content are becoming more attractive. In this research, an additional refining step is investigated in order to recover valuable metals from slag generated during nickel extraction process, particularly copper, nickel, and cobalt. Slag was settled at the different temperatures for various times in conditions that simulated the industrial environment. The chemical composition and morphology of newly formed matte and slag were determined. Kinetic parameters of matte formation, valuable metal recovery rates and partition coefficients were deduced. Metals separation and settling rate was found to be strongly dependent on temperature. The highest recovery rates were found to occur at 1598 K (1325°C) for two hour settling while the most economical combination of parameters was found when settling at 1573 K (1300°C) for one hour. Silica additions generated higher partition coefficients for copper and nickel than the addition of lime. It is concluded that an additional refining step involving SiO2 and CaO fluxes is an economical way to recover more than 60% of valuable metals from slag that is disposed in landfills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.