Abstract

NdFeB magnet scraps contain large amounts of iron, which poses challenges in recycling and greatly hinders the recovery of rare earths through direct hydrometallurgical treatment. To address this issue, we conducted tests using a flash furnace to explore the low-temperature reduction behavior of NdFeB magnet scraps under an H2 atmosphere based on thermodynamic calculations comparing the reduction properties of rare earth oxides (REOs) and iron oxide (FeOx). The results demonstrated that the reduction rate of FeOx surpassed 95% under optimal conditions including a reduction temperature of 723 K, a particle size (D90) of 0.45 μm, and an H2 flow rate of 2 L/min. X-ray diffraction and electron probe microanalysis of the reduction product revealed that the flash reduction at 723 K facilitated the selective reduction of FeOx, owing to efficient mass and heat transfer. Consequently, a two-step magnetic separation process was employed to separate metallic Fe and REOs from the reduction product. Fe-rich phase, obtained with a remarkable Fe distribution ratio of 90.2%, can serve as an economical raw material for weathering steel. Additionally, the REOs are enriched in REO-rich phase, achieving a distribution ratio of 93.9% and significantly boosting the REO concentration from 30.2 to 82.8 wt%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call