Abstract

Capillary electrophoresis (CE) is an analytical technique widely utilized to resolve complex mixtures of nucleic acids. CE uses a variety of polymers in solution that act as a molecular sieve to separate nucleic acid fragments according to size. It has been shown previously that purified dsDNA can be resolved efficiently by solutions of hydroxyethylcellulose (HEC) polymer, providing a rapid and high resolution method of separation. We have applied this separation technique to viral double-stranded (ds) RNA segments derived from rotavirus process samples. HEC polymers of various molecular masses and concentrations were identified and compared for their ability to separate dsRNA based on the extent of expected polymer network formation. The HEC polymer exhibiting the most desirable separation characteristics was then used for subsequent optimization of various method parameters, such as, injection time, electric field strength, dye concentration and capillary equilibration. The optimized method was then applied to the quantification of genome concentration based on a representative segment of the rotavirus genome. This study demonstrated that purified viral dsRNA material of known concentration could be used to generate an external standard curve relating concentration to peak area. This standard curve was used to determine the concentration of unknown samples by interpolation. This novel RNA quantification assay is likely to be applicable to other types of virus, including those containing dsDNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.