Abstract

This study used a liquid-phase microextraction-based effervescent tablet-assisted switchable solvent method coupled to gas chromatography-flame ionization detection as an eco-efficient, convenient-to-use, cost-effective, sensitive, rapid, and efficient method for extracting, preconcentrating, and quantifying trace amounts of diazinon in river water samples. As a switchable solvent, triethylamine (TEA) was used. In situ generation of CO2 using effervescent tablet containing Na2 CO3 and citric acid changed the hydrophobic TEA to the hydrophilic protonated triethylamine carbonate (P-TEA-C). CO2 removal from the specimen solution using NaOH caused P-TEA-C to be converted into TEA and led to phase separation, during which diazinon was extracted into the TEA phase. The salting-out process was helpful in enhancing extraction efficiency. In addition, a number of significant parameters that affect extraction recovery were examined. Under optimum conditions, the limit of detection and limit of quantitation were 0.06 and 0.2ng/ml, respectively. The extraction recovery percentage and pre-concentration factor were obtained at 95 and 190%, respectively, and the precision (inter- and intra-day, relative standard deviation %, n= 5) was <5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.