Abstract
Azvudine (FNC) is a new drug conditionally approved in 2022 for the treatment of coronavirus disease 2019 (COVID-19) in China. However, the exposure level of FNC in COVID-19 patients in clinical practice is still obscure, and there is no liquid chromatography-tandem mass spectrometry (LC-MS/MS) or LC method reported for quantifying the FNC. In this study, a simple, fast, and reliable LC-MS/MS method using L-phenylalanine-D5 (Phe-D5) as the internal standard (IS) was developed for the quantification of FNC in plasma from COVID-19 patients. After simple protein precipitation with methanol, the analyte in the supernatant was separated on Waters Atlantis® T3 (2.1 ×100 mm, 3.0 µm) column with the mobile phase consisting of acetonitrile (ACN) - aqueous solution (containing 0.03% heptafluorobutyric acid and 0.2% formic acid). The mobile phase was delivered at 0.3 mL/min in an isocratic elution program (15:85, V: V). The linear relationship of FNC was good within the calibration range of 2.0 – 2000.0 ng/mL, with the recovery of FNC ranging from 81.37% to 103.31% and the matrix effect was 94.77%− 109.83%. The short-term, long-term, and freeze-thaw stability of the FNC assessed in method was acceptable, and all other items met the requirements of validation of the biological analytical method. Finally, the method was applied to detect the exposure level of FNC in plasma samples from patients diagnosed with COVID-19, and the results, which are within the linear range of the method, showed huge inter-individual variation, supporting the significance of therapeutic drug monitoring of FNC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.