Abstract

Decomposition of local field potential (LFP) signals with different oscillatory rhythms is useful for analysis of various neuronal activities in mice. In this paper, we first removed the power-line interference with high signal fidelity by using a notch filter with infinite impulse response. Next, we applied the ensemble empirical mode decomposition (EEMD) method to separate the LFP signal into low-frequency, Delta, Theta, Beta, Gamma, Ripple, and high-frequency oscillations, in the form of different intrinsic mode functions (IMFs). The LFP signal components with different frequency bands were identified and then reconstructed from the IMFs within the same frequency range by analyzing their power spectral ratios (PSRs). Then, normalized autocorrelation functions of the resting respiratory signal and the reconstructed Delta oscillations were computed to estimate the corresponding power spectral densities by means of the Fourier transform. The results of LFP signal decomposition and oscillatory rhythm reconstruction demonstrated the effectiveness of the EEMD and PSR analysis methods. The coherence analysis results indicate that the primary periodicity peak of the Delta LFP component is definitely linked to that of resting respiration in an awake mouse. Our major contribution is to establish a novel LFP signal separation and identification procedure by combining the EEMD method with appropriate parameter setting and the power spectral analysis approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call