Abstract
We study some categorical aspects of quasi-uniform spaces (mainly separation and epimorphisms) via closure operators in the sense of Dikranjan, Giuli, and Tholen. In order to exploit better the corresponding properties known for topological spaces we describe the behaviour of closure operators under the lifting along the forgetful functor T from quasi-uniform spaces to topological spaces. By means of appropriate closure operators we compute the epimorphisms of many categories of quasi-uniform spaces defined by means of separation axioms and study the preservation (reflection) of epimorphisms under the functor T.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.