Abstract
The purification of p-xylene (pX) from its xylene isomers represents a challenging but important industrial process. Herein, we report the efficient separation of pX from its ortho- and meta- isomers by a microporous calcium-based metal-organic framework material (HIAM-203) with a flexible skeleton. At 30 °C, all three isomers are accommodated but the adsorption kinetics of o-xylene (oX) and m-xylene (mX) are substantially slower than that of pX, and at an elevated temperature of 120 °C, oX and mX are fully excluded while pX can be adsorbed. Multicomponent column breakthrough measurements and vapor-phase/liquid-phase adsorption experiments have demonstrated the capability of HIAM-203 for efficient separation of xylene isomers. Ab initio calculations have provided useful information for understanding the adsorption mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.