Abstract

Vibrational sum frequency generation (SFG) spectroscopy was utilized to distinguish different populations of water molecules within the electric double layer (EDL) at the silica/water interface. By systematically varying the electrolyte concentration, surface deprotonation, and SFG polarization combinations, we provide evidence of two regions of water molecules that have distinct pH-dependent behavior when the Stern layer is present (with onset between 10 and 100 mM NaCl). For example, water molecules near the surface in the Stern layer can be probed by the pss polarization combination, while other polarization combinations (ssp and ppp) predominantly probe water molecules further from the surface in the diffuse part of the electrical double layer. For the water molecules adjacent to the surface within the Stern layer, upon increasing the pH from the point-of-zero charge of silica (pH ∼2) to higher values (pH ∼12), we observe an increase in alignment consistent with a more negative surface with increasing...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.