Abstract

Cell viability studies are essential in numerous applications, including drug development, clinical analysis, bioanalytical assessments, food safety, and environmental monitoring. Microfluidic electrokinetic (EK) devices have been proven to be effective platforms to discriminate microorganisms by their viability status. Two decades ago, live and dead Escherichia coli (E. coli) cells were trapped at distinct locations in an insulator-based EK (iEK) device with cylindrical insulating posts. At that time, the discrimination between live and dead cells was attributed to dielectrophoretic effects. This study presents the continuous separation between the live and dead E. coli cells, which was achieved primarily by combining linear and nonlinear electrophoretic effects in an iEK device. First, live and dead E. coli cells were characterized in terms of their electrophoretic migration, and then the properties of both live and dead E. coli cells were input into a mathematical model built using COMSOL Multiphysics software to identify appropriate voltages for performing an iEK separation in a T-cross iEK channel. Subsequently, live and dead cells were successfully separated experimentally in the form of an electropherogram, achieving a separation resolution of 1.87. This study demonstrated that linear and nonlinear electrophoresis phenomena are responsible for the discrimination between live and dead cells under DC electric fields in iEK devices. Continuous electrophoretic assessments, such as the one presented here, can be used to discriminate between distinct types of microorganisms including live and dead cell assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.