Abstract
Bentonite was applied in diffusive studies for selenium, an emerging contaminant. The planar source method was used to determine the apparent and effective diffusion coefficients and assess the mobility of the selenium species. A double Gaussian function described the results. Different diffusion coefficients were associated with different mobilities, and consequently, to the coexistence of two selenium species: selenite and selenate. Apparent diffusion coefficients were higher for selenate, around 10- 10 m2 s- 1, than for selenite, around 10- 12 m2 s- 1. Results from sequential extraction and distribution coefficient justified selenate's greater mobility than selenite. Since the increase in redox potential from 448 to 511 mV may be associated with selenite oxidation in an interconversion process, the diffusion in bentonite demonstrates that applications in geological barriers deserve attention regarding the mobilization of selenium species. Interconversions can mobilize selenium, as reduced species can shift to more oxidized and mobile species, enhancing environmental contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.