Abstract

Two-point radon gradients provide a direct, unambiguous measure of near-surface atmospheric mixing. A 31-month data set of hourly radon measurements at 2 and 50 m is used to characterize the seasonality and diurnal variability of radon concentrations and gradients at a site near Sydney. Vertical differencing allows separation of remote (fetchrelated) effects on measured radon concentrations from those due to diurnal variations in the strength and extent of vertical mixing. Diurnal composites, grouped according to the maximum nocturnal radon gradient (Cmax), reveal strong connections between radon, wind, temperature and mixing depth on subdiurnal timescales. Comparison of the bulk Richardson Number (RiB) and the turbulence kinetic energy (TKE) with the radon-derived bulk diffusivity (KB) helps to elucidate the relationship between thermal stability, turbulence intensity and the resultant mixing. On nights with large Cmax, KB and TKE levels are low and RiB is well above the ‘critical’ value. Conversely, when Cmax is small, KB and TKE levels are high and RiB is near zero. For intermediate Cmax, however, RiB remains small whereas TKE and KB both indicate significantly reduced mixing. The relationship between stability and turbulence is therefore non-linear, with even mildly stable conditions being sufficient to suppress mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.