Abstract

We present a novel paradigm to identify shared and unique brain regions underlying non-semantic, non-phonological, abstract, audio-visual (AV) memory vs. naming using a longitudinal functional magnetic resonance imaging experiment. Participants were trained to associate novel AV stimulus pairs containing hidden linguistic content. Half of the stimulus pairs were distorted images of animals and sine-wave speech versions of the animal's name. Images and sounds were distorted in such a way as to make their linguistic content easily recognizable only after being made aware of its existence. Memory for the pairings was tested by presenting an AV pair and asking participants to verify if the two stimuli formed a learned pairing. After memory testing, the hidden linguistic content was revealed and participants were tested again on their recollection of the pairings in this linguistically informed state. Once informed, the AV verification task could be performed by naming the picture. There was substantial overlap between the regions involved in recognition of non-linguistic sensory memory and naming, suggesting a strong relation between them. Contrasts between sessions identified left angular gyrus and middle temporal gyrus as key additional players in the naming network. Left inferior frontal regions participated in both naming and non-linguistic AV memory suggesting the region is responsible for AV memory independent of phonological content contrary to previous proposals. Functional connectivity between angular gyrus and left inferior frontal gyrus and left middle temporal gyrus increased when performing the AV task as naming. The results are consistent with the hypothesis that, at the spatial resolution of fMRI, the regions that facilitate non-linguistic AV associations are a subset of those that facilitate naming though reorganized into distinct networks.

Highlights

  • The ability to learn associations between stimuli in multiple sensory modalities is extremely important

  • We focus on the uniformed and informed sessions collected during the 28 day follow-up visit

  • During the delay portion of the task, BOLD increases in the Informed relative to the Uninformed session were located in the left inferior parietal lobule, with the majority of the cluster in the left angular gyrus (PGa), and in the posterior cingulate cortex (PCC)

Read more

Summary

Introduction

The ability to learn associations between stimuli in multiple sensory modalities is extremely important. Naming a picture of a tiger for example, is believed to require visual access to the semantic representation of “Tiger,” leading to selection of the appropriate lexical item associated with this concept (Levelt et al, 1991). These linguistic associations are not inherently related to the concepts in the world and are completely arbitrary (e.g., there are no affordances in the image of a tiger that suggests its auditory label should contain the phoneme /t/). The arbitrary word labels are not bound to the picture thereby forming a multisensory object but rather the multiple representations are associated together in memory

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call