Abstract

Optical two-dimensional Fourier-transform spectroscopy is used to study the heavy- and light-hole excitonic resonances in weakly disordered GaAs quantum wells. Homogeneous and inhomogeneous broadening contribute differently to the two-dimensional resonance line shapes, allowing separation of homogeneous and inhomogeneous line widths. The heavy-hole exciton exhibits more inhomogeneous than homogeneous broadening, whereas the light-hole exciton shows the reverse. This situation occurs because of the interplay between the length scale of the disorder and the exciton Bohr radius, which affects the exciton localization and scattering. Utilizing this separation of line widths, excitation-density-dependent measurements reveal that many-body interactions alter the homogeneous dephasing, while disorder-induced dephasing is unchanged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.