Abstract

Abstract. The contribution of meteorology and emissions to long-term PM2.5 trends is critical for air quality management but has not yet been fully analyzed. Here, we used the combination of a machine learning model, statistical method, and chemical transport model to quantify the meteorological impacts on PM2.5 pollution during 2000–2018. Specifically, we first developed a two-stage machine learning PM2.5 prediction model with a synthetic minority oversampling technique to improve the satellite-based PM2.5 estimates over highly polluted days, thus allowing us to better characterize the meteorological effects on haze events. Then we used two methods to examine the meteorological contribution to PM2.5: a generalized additive model (GAM) driven by the satellite-based full-coverage daily PM2.5 retrievals and the Weather Research and Forecasting/Community Multiscale Air Quality (WRF/CMAQ) modeling system. We found good agreements between GAM estimations and the CMAQ model estimations of the meteorological contribution to PM2.5 on a monthly scale (correlation coefficient between 0.53–0.72). Both methods revealed the dominant role of emission changes in the long-term trend of PM2.5 concentration in China during 2000–2018, with notable influence from the meteorological condition. The interannual variabilities in meteorology-associated PM2.5 were dominated by the fall and winter meteorological conditions, when regional stagnant and stable conditions were more likely to happen and when haze events frequently occurred. From 2000 to 2018, the meteorological contribution became more unfavorable to PM2.5 pollution across the North China Plain and central China but were more beneficial to pollution control across the southern part, e.g., the Yangtze River Delta. The meteorology-adjusted PM2.5 over eastern China (denoted East China in figures) peaked in 2006 and 2011, mainly driven by the emission peaks in primary PM2.5 and gas precursors in these years. Although emissions dominated the long-term PM2.5 trends, the meteorology-driven anomalies also contributed −3.9 % to 2.8 % of the annual mean PM2.5 concentrations in eastern China estimated from the GAM. The meteorological contributions were even higher regionally, e.g., −6.3 % to 4.9 % of the annual mean PM2.5 concentrations in the Beijing-Tianjin-Hebei region, −5.1 % to 4.3 % in the Fenwei Plain, −4.8 % to 4.3 % in the Yangtze River Delta, and −25.6 % to 12.3 % in the Pearl River Delta. Considering the remarkable meteorological effects on PM2.5 and the possible worsening trend of meteorological conditions in the northern part of China where air pollution is severe and population is clustered, stricter clean air actions are needed to avoid haze events in the future.

Highlights

  • Air pollution, especially PM2.5 pollution, has become a serious problem in China in the past decades

  • We showed that the temporal trends of meteorology-associated PM2.5 estimated from the generalized additive model (GAM) method and from the chemical transport model were highly consistent

  • The density distribution of the PM2.5 predictions from the benchmark model showed a higher percentage of low PM2.5 concentrations and a lower percentage of high PM2.5 concentrations than those revealed by the density distribution of the measurements

Read more

Summary

Introduction

Especially PM2.5 pollution, has become a serious problem in China in the past decades. X. Zhang et al (2019) reported that about 13 % and 20 % of total PM2.5 decline during 2013–2017 are due to meteorological effects in Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD), respectively, estimated from the Parameter Linking Aerosol pollution and Meteorological elements (PLAM) (Yang et al, 2009). Previous studies further analyzed the long-term trend of effects of meteorological systems and climate change on PM2.5 pollution, especially in the context of global warming (Liu et al, 2017; Wang and Chen, 2016; Yi et al, 2019). Feng et al (2020) reported a trend of negative meteorological effects on air quality improvements in northern China during 1980–2018, but the effects dropped during 2013–2018. Distinguishing the contributions of emission and meteorology is critical for the evaluation of clean air policies, projection of the future air quality, and understanding of pollution processes

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.