Abstract
Blind separation of convolutive mixtures by minimizing the mutual information between output sequences can avoid the side effect of temporally whitening the outputs, but it involves the score function difference, whose estimation may be problematic when the data dimension is greater than two. This greatly limits the application of this method. Fortunately, for separating convolutive mixtures, pairwise independence of outputs leads to their mutual independence. As an implementation of this idea, we propose a way to separate convolutive mixtures by enforcing pairwise independence. This approach can be applied to separate convolutive mixtures of a moderate number of sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.