Abstract

We report a novel imaging technique for fluorescence diffuse optical tomography (FDOT). Unlike conventional FDOT, this technique separates the imaging procedure into two steps to respectively reconstruct the structural information (such as the center position and the radius), and the functional information (such as the fluorophore concentration and/or lifetime) of a fluorescing target embedded in a turbid medium. The structural parameters of the target were estimated from the amplitude ratio and phase difference of fluorescence signals received at different detectors, because the amplitude ratio and phase difference were found independent of, or weakly related to, the functional parameters. Based on the estimated structural parameters, a dual-zone mesh technique was utilized to reconstruct the fluorophore concentration. Results of simulations and phantom experiments showed that the structural parameters could be accurately recovered, without knowing the functional information, and that the reconstruction accuracy of the functional parameter was greater than 80%.

Highlights

  • Diffuse optical tomography (DOT) employs near infrared (NIR) diffused light to probe for functional information of biological tissues [1–7]

  • This low reconstruction accuracy may be caused by fewer measurements acquired over a larger imaging region; these were 7 × 30 measurements by Lee et al, and 27×128 by Godavarty et al A commercially available time-domain fluorescence system designed for small animal imaging, Explore OptixTM, has been developed by the Advanced Research Technology

  • The amplitude ratio and phase difference between the fluorescence signals received at two detectors, and excited by a single source, were used to extract the structural parameters of a target, because the amplitude ratio and phase difference were independent of, or weakly related to, the fluorophore concentration

Read more

Summary

Introduction

Diffuse optical tomography (DOT) employs near infrared (NIR) diffused light to probe for functional information of biological tissues [1–7]. Approximate 46% and 140% of the expected values were obtained by Godavarty et al [13] for the imperfect uptake of fluorophore into the target (100:1) and for the perfect uptake (1:0), respectively. This low reconstruction accuracy may be caused by fewer measurements acquired over a larger imaging region; these were 7 × 30 (sources × detectors) measurements by Lee et al, and 27×128 by Godavarty et al A commercially available time-domain fluorescence system designed for small animal imaging, Explore OptixTM, has been developed by the Advanced Research Technology

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.