Abstract

Qualitative structural concepts about dynamic ion pairs, historically deduced in solution as labile solvent-separated and contact species, are now quantified by the low-temperature isolation of crystalline (reactive) salts suitable for direct X-ray analysis. Thus, dinitrobenzenide anion (DNB(-)) can be prepared in the two basic ion-paired forms by potassium-mirror reduction of p-dinitrobenzene in the presence of macrocyclic polyether ligands: L(C) (cryptand) and L(E) (crown-ethers). The crystalline "separated" ion-pair salt isolated as K(L(C))(+)//DNB(-) is crystallographically differentiated from the "contact" ion-pair salt isolated as K(L(E))(+)DNB(-) by their distinctive interionic separations. Spectral analysis reveals pronounced near-IR absorptions arising from intervalence transitions that characterize dinitrobenzenide to be a prototypical mixed-valence anion. Most importantly, the unique patterns of vibronic (fine-structure) progressions that also distinguish the "separated" from the "contact" ion pair in the crystalline solid state are the same as those dissolved into THF solvent and ensure that the same X-ray structures persist in solution. Moreover, these distinctive NIR patterns are assigned with the aid of Marcus-Hush (two-state) theory to the "separated"ion pair in which the unpaired electron is equally delocalized between both NO(2)-centers in the symmetric ground state of dinitrobenzenide, and by contrast, the asymmetric electron distribution inherent to "contact"ion pairs favors only that single NO(2)-center intimately paired to the counterion. The labilities of these dynamic ion pairs in solution are thoroughly elucidated by temperature-dependent ESR spectral changes that provide intimate details of facile isomerizations, ionic separations, and counterion-mediated exchanges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call