Abstract
A simply connected topological space X has homotopy Lie algebra π ∗ ( Ω X ) ⊗ Q . Following Quillen, there is a connected differential graded free Lie algebra (dgL) called a Lie model, which determines the rational homotopy type of X , and whose homology is isomorphic to the homotopy Lie algebra. We show that such a Lie model can be replaced with one that has a special property that we call being separated. The homology of a separated dgL has a particular form which lends itself to calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.