Abstract
Many coherent imaging modalities such as synthetic aperture radar suffer from a multiplicative noise, commonly referred to as speckle, which often makes the interpretation of data difficult. An effective strategy for speckle reduction is to use a dictionary that can sparsely represent the features in the speckled image. However, such approaches fail to capture important salient features such as texture. In this paper, we present a speckle reduction algorithm that handles this issue by formulating the restoration problem so that the structure and texture components can be separately estimated with different dictionaries. To solve this formulation, an iterative algorithm based on surrogate functionals is proposed. Experiments indicate the proposed method performs favorably compared to state-of-the-art speckle reduction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.