Abstract

In the retina, several molecules involved in metabolism, the visual cycle, and other roles exhibit intrinsic fluorescence. The overall properties of retinal fluorescence depend on changes to the composition of these molecules and their environmental interactions due to transient functional shifts, especially in disease. This behooves the understanding of the origins and deviations of these properties within the multilayered retina at high lateral and axial resolution. Of particular interest is the fluorescence lifetime, a potential biomarker of function and disease independent of fluorescence intensity that can be measured in the retina with adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO). This work demonstrates the utility of the phasor method of analysis, an alternate approach to traditional multiexponential fitting, to evaluate photoreceptor two-photon excited AOFLIO data and separate them based on functional differences. Phasor analysis on fluorescence lifetime decay data allowed the repeatable segregation of S from M/L cones, likely from differences in functional or metabolic demands. Furthermore, it is possible to track the lifetime changes in S cones after photodamage. Phasor analysis increases the sensitivity of AOFLIO to functional differences between cells and has the potential to improve our understanding of pathways involved in normal and diseased conditions at the cellular scale throughout the retina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.