Abstract
This study assessed the respective roles of biochemical quality and N content of plant residues on C and N dynamics in a soil. Both 15N- and 13C-labeled oilseed rape residues (roots, seedpod walls) combining different biochemical characteristics and similar N content or the same biochemical characteristics and different N contents were used as amendments. These treatments were combined with two levels of soil inorganic N to ensure that decomposition was not limited by N availability. The soil was incubated under laboratory conditions for 134 days. Soil amended with residues of similar biochemical quality (i.e. the two pod walls) displayed similar C mineralization dynamics when the initial N availability (residue+soil N) ranged from 1.7 to 3.2% of residue dry matter. The roots showed poorer decomposition than the pod walls, lower cumulative C mineralization and greater accumulation of root-derived C in the >50 μm coarse fraction of the soil organic matter. The N content of the residues influenced mineral N accumulation in the soil with a lower net immobilization of residues with low C-to-N ratios. Adding an exogenous source of inorganic N had no effect on C dynamics but modified the remineralization kinetics of the previously immobilized N, suggesting changes in the microbial community involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.