Abstract

The separate effects of surface wettability, porosity, and roughness on the critical heat flux (CHF) of water were examined using engineered surfaces. Values explored were 0, 5, 10, and 15 μm for Rz (roughness), <5°, ∼75°, and >110° for static contact angle (wettability), and 0 and 50% for pore volume fraction. The porous hydrophilic surface enhanced CHF by 50%–60%, while the porous hydrophobic surface resulted in a reduction of CHF by 97%. Wettability had little effect on the smooth non-porous surface CHF. Surface roughness (Ra, Rq, Rz) had no effect on CHF within the limit of this database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.