Abstract

We examined the effects of time of day and verbal instruction, separately and combined, on knee extensor neuromuscular adjustments, with special reference to rapid muscle force production capacity. Ten healthy male participants performed 4 experimental trials in counterbalanced order: morning "hard-and-fast" instruction, evening hard-and-fast instruction, morning "fast" instruction, and evening fast instruction. During each experimental trial, neuromuscular performance was assessed from the completion of 6 maximal isometric voluntary contractions (rest = 2 min) of the knee extensors with concomitant quadriceps surface electromyography recordings. For each contraction, we determined maximal voluntary force (Fmax), maximal rate of force development (RFDmax) and associated maximal electromechanical delay (EMDmax), and maximal rate of muscle activation (RMAmax). Globally, oral temperature (+2.2%), Fmax (+4.9%) and accompanying median frequency (+6.6%)/mean power frequency (+6.0%) as well as RFDmax (+13.5%) and RMAmax (+15.5%) were significantly higher in the evening than morning (p < 0.05). Conversely, evening in reference to morning values were lower for EMDmax (-4.3%, p < 0.05). Compared with a hard-and-fast instruction, RFDmax (+30.6%) and corresponding root mean square activity (+18.6%) were globally higher using a fast instruction (p < 0.05), irrespectively of the time of day. There was no significant interaction effect of time of day and verbal instruction on any parameter, except for EMDmax (p = 0.028). Despite diurnal variation in maximal or explosive force production of knee extensors and associated neuromuscular parameters, these adjustments occurred essentially independently of the verbal instruction provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call