Abstract
This research develops a new interpolation scheme, a separable stress interpolation (SSI) which allows stress-based topology optimization with multiple materials (STOMM). In common material interpolation function such as extended solid isotropic material with penalization (SIMP) for multiple materials, Young's modulus is interpolated from those of several solids to a smaller value with respect to design variables whose number is same as the number of considered materials. When the same interpolated Young's modulus is used for stress evaluation, it is found that the calculated stress norm becomes a small value when ones are assigned to the design variables of each element causing physically unacceptable layouts. In order to resolve this ill-posed issue for STOMM, we present the SSI scheme which computes the stress constraints of stacked elements separately. For a stable topology optimization process, the computational issues of the p-norm stress measure, the number of stress evaluation points inside an element, and the correction parameter for the approximated stress measure are addressed for STOMM. Furthermore, we present a new regional constraint method based on the sorting algorithm. The applicability and limitations of the newly developed framework are discussed in the context of its application to several stress-based topology optimizations with multiple materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.