Abstract

Two-photon states entangled in continuous variables such as wavevector or frequency represent a powerful resource for quantum information protocols in higher-dimensional Hilbert spaces. At the same time, there is a problem of addressing separately the corresponding Schmidt modes. We propose a method of engineering two-photon spectral amplitude in such a way that it contains several non-overlapping Schmidt modes, each of which can be filtered losslessly. The method is based on spontaneous parametric down-conversion (SPDC) pumped by radiation with a comb-like spectrum. There are many ways of producing such a spectrum; here we consider the simplest one, namely passing the pump beam through a Fabry-Perot interferometer. For the two-photon spectral amplitude (TPSA) to consist of non-overlapping Schmidt modes, the crystal dispersion dependence, the length of the crystal, the Fabry-Perot free spectral range and its finesse should satisfy certain conditions. We experimentally demonstrate the control of TPSA through these parameters. We also discuss a possibility to realize a similar situation using cavity-based SPDC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.