Abstract
We show that groupoid rings are separable over their ring of coefficients if and only if the groupoid is finite and the orders of the associated principal groups are invertible in the ring of coefficients. We use this to show that if we are given a finite groupoid, then the associated groupoid ring is semisimple (or hereditary) if and only if the ring of coefficients is semisimple (or hereditary) and the orders of the principal groups are invertible in the ring of coefficients. To this end, we extend parts of the theory of graded rings and modules from the group graded case to the category graded, and, hence, groupoid graded situation. In particular, we show that strongly groupoid graded rings are separable over their principal components if and only if the image of the trace map contains the identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.