Abstract

This paper extends the recently developed method of separable Gaussian neural networks (SGNN) to obtain solutions of the Fokker–Planck–Kolmogorov (FPK) equation in high-dimensional state space. Several challenges when extending SGNN to high-dimensional state space are addressed including proper definition of domain for placing Gaussian neurons and region for data sampling, and numerical integration issue of evaluating marginal probability density functions. Three benchmark nonlinear dynamic systems with increasing complexity and dimension are examined with the SGNN method. In particular, the steady-state probability density of the response is obtained with the SGNN method and compared with the results of extensive Monte Carlo simulations. It should be pointed out that some solutions of high-dimensional FPK equations for nonlinear dynamic systems would be very difficult to obtain without SGNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.