Abstract

We report quasi-elastic neutron scattering experiments at two resolutions that probe timescales of picoseconds to nanoseconds for the hydration dynamics of water, confined in a concentrated solution of N-acetyl-leucine-methylamide (NALMA) peptides in water over a temperature range of 248 K to 288 K. The two QENS resolutions used allow for a clean separation of two observable translational components, and ultimately two very different relaxation processes, that become evident when analyzed under a combination of the jump diffusion model and the relaxation cage model. The first translational motion is a localized beta-relaxation process of the bound surface water, and exhibits an Arrhenius temperature dependence and a large activation energy of approximately 8 kcal mol(-1). The second non-Arrhenius translational component is a dynamical signature of the alpha-relaxation of more fluid water, exhibiting a glass transition temperature of approximately 116 K when fit to the Volger Fulcher Tamman functional form. These peptide solutions provide a novel experimental system for examining confinement in order to understand the dynamical transition in bulk supercooled water by removing the unwanted interface of the confining material on water dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call